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ABSTRACT: The Warn-on-Forecast system (WoFS) provides short-term, probabilistic forecasts of severe convective

hazards including tornadoes, hail, and damagingwinds.WoFS initial conditions are created through frequent assimilation of

radar (reflectivity and radial velocity), satellite, and in situ observations. From 2016 to 2018, 5-km radial velocity Cressman

superob analyses were created to reduce the observation counts and subsequent assimilation computational costs. The

superobbing procedure smooths the radial velocity and subsequently fails to accurately depict important storm-scale fea-

tures such as mesocyclones. This study retrospectively assimilates denser, 3-km radial velocity analyses in lieu of the 5-km

analyses for eight case studies during the spring of 2018. Although there are forecast improvements during and shortly after

convection initiation, 3-km analyses negatively impact forecasts initialized when convection is ongoing, as evidenced by

model failure and initiation of spurious convection. Therefore, two additional experiments are performed using adaptive

assimilation of 3-km radial velocity observations. Initially, an updraft variance mask is applied that limits radial velocity

assimilation to areas where the observations are more likely to be beneficial. This experiment reduces spurious convection

as well as the number of observations assimilated, in some cases even below that of the 5-km analysis experiments.

The masking, however, eliminates an advantage of 3-km radial velocity assimilation for convection initiation timing.

This problem is mitigated by additionally assimilating 3-km radial velocity observations in locations where large differences

exist between the observed and ensemble-mean reflectivity fields, which retains the benefits of the denser radial velocity

analyses while reducing the number of observations assimilated.

KEYWORDS: Convective storms; Radars/Radar observations; Short-range prediction; Cloud resolving models; Data

assimilation

1. Introduction

The goal of the NOAA Warn-on-Forecast (WoF) project is

to produce short-term (0–6 h), probabilistic forecasts of haz-

ards associated with severe convection including tornadoes,

hail, damaging winds, and flash flooding (Stensrud et al. 2009,

2013). Beginning in 2016, the NSSL experimental WoF System

(WoFS) provided real-time, convective-scale ensemble fore-

casts of spring convective events (Wheatley et al. 2015; Jones

et al. 2016) and a baseline of forecast quality across 64 cases

from 2017 and 2018 has been established using object-based

verification techniques (Skinner et al. 2018; Flora et al. 2019).

Forecasts are typically initialized every 30 min between

1900 and 0300 UTC for a regional domain covering ex-

pected locations of severe thunderstorm development in

the United States. This study will consider eight WoFS

cases from the 2018 Hazardous Weather Testbed (HWT)

Spring Forecasting Experiment (SFE; Gallo et al. 2017)

conducted by the NOAAStormPredictionCenter and National

Severe Storms Laboratory.

One important aspect of any data assimilation system, par-

ticularly one that utilizes dense observations, is the method to

‘‘thin’’ observation sets before assimilation. The process in this

study is called ‘‘superobbing’’ and is needed when assimilating

dense observations from platforms such as Doppler radars and

satellites (Janjić et al. 2018). The U.S. Doppler radar network

has a grid spacing of 0.25 km along each radial and an azi-

muthal spacing that is less than 1.5 km within 150 km of the

radar (the maximum range used for the analysis) at low

levels.1 Typical convection-allowing models use grid spacings

of ;3 km. Therefore, superobbing is utilized to remove fea-

tures that cannot be resolved on the numerical grid (Majcen

et al. 2008). Superobbing is also used to reduce random errors

in the observations as well as to reduce the error correlation

between observations (Lu and Xu 2009). A variety of methods

have been used for thinning radar data (Albers 1995; Seko et al.

2004; Salonen et al. 2009). Lu and Xu (2009) found that su-

perobbing the radar data to a resolution approximately twice

the grid spacing improves the analysis of storm-scale features

in the ensemble. Thus, for the real-time WoFS, the Doppler

reflectivity and radial velocity have been superobbed to a

horizontal grid that has larger grid spacing than the numerical

prediction model.

A key to the success of WoFS forecasts is rapidly cycling

assimilation of radar data (reflectivity and Doppler radial ve-

locity; Snyder and Zhang 2003; Dowell et al. 2004; Tong and

Xue 2005; Aksoy et al. 2009; Yussouf and Stensrud 2010),
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satellite data (Jones et al. 2016), and conventional surface

observations using an ensemble Kalman filter (EnKF). In 2018,

radar observations were assimilated in the real-time system by

creating superobs on two-dimensional grids using 5-km grid

spacing2 via the Cressman method (Cressman 1959). Both ra-

dar reflectivity from the Multi-Radar Multi-Sensor (MRMS;

Smith et al. 2016) and radial velocity (hereinafter Vr) from

individual radars are analyzed to the 5-km grid. The smoothing

associated with the 5-km analysis grid spacing given the

specified radius of influence may result in Vr superobs not

accurately representing the most important features ob-

served within severe convective storms since typical conti-

nental mesocyclones have horizontal diameters between

3 and 10 km (Fig. 1). Use of these smoothed Vr superobs can

adversely impact or neglect to impact the analyses and

forecasts of severe convection (Wicker et al. 2018) as there

can be too few observations of individual convective storm

features, particularly mesocyclones, to adequately produce

suitable model depictions.

The focus of this paper is to explore using denser radial

velocity superobs and to optimize their use to improve WoFS

forecasts. This study repeats eight real-time cases from the

2018 HWT SFE to examine WoFS forecast sensitivity to var-

iations inVr superob method, specifically using a 3-km analysis

grid spacing and a Cressman radius of influence (ROI) of 1 km.

Observation ROI data assimilation sensitivity tests were per-

formed as a precursor to this study and found a 1-km ROI

to produce the most ideal results rather than a larger ra-

dius. For example, the use of 5-km superobs for radial

velocity often removes information about storm rotation.

The purpose of 3-km superobs is to more accurately cap-

ture the character of the storm. This observational analysis

better depicts the true state of convective storms compared

to the 5-km superobs utilized in the real-time experiments.

In the current study, multiple sets of experiments are

performed to find an optimal assimilation configuration.

The initial experiment assimilates all available 3-km Vr

observations. However, this method results in some model

failure3 and noisy forecasts (described below; Lange and

Craig 2014; Thompson et al. 2015). A second and third

experiment adaptively assimilates higher-resolution ob-

servations using a ‘‘targeted assimilation’’ approach in

which observations are only assimilated if they are more

likely to impact ensemble analyses and forecasts.

The next section outlines the method including ensemble

design, verification techniques, and the adaptive assimilation

process. Section 3 presents the various assimilation results in

comparison with those from real-time experiments. Last,

section 4 discusses and summarizes the importance of the

results.

2. Method

a. 2018 case studies

Eight convective events from the 2018 HWT SFE are ex-

amined in this study (Table 1). The events include various

convective modes as well as times of convection initiation (CI).

Cases include discrete supercell events (1, 2, and 16May), mixed

modes with disorganized convection (14, 28, and 29 May), and

well-organized mesoscale convective systems (MCSs; 12 and

15 May). These events are also in different locations within

the United States. The discrete-cell cases are confined to the

central United States, and twoMCS cases (12 and 15May) are

in the mid-Atlantic region. The cases are all high-impact se-

vere weather events that resulted in many local storm reports.

Considering cases involving different convective modes and

locations may reveal circumstances where improved Vr as-

similation is more impactful.

b. Ensemble configuration

The WoFS is an ensemble data assimilation and forecast

system initialized using the High-Resolution Rapid Refresh

Ensemble (HRRRE; Dowell et al. 2016). WoFS consists of 36

WRF-ARW (Skamarock et al. 2008) ensemble members with

varying physical parameterization schemes (Table 2; Wheatley

et al. 2015). During the 2018 SFE, WoFS was run over a

750 km 3 750 km domain with 3-km horizontal grid spacing.

The WoFS was initialized daily at 1800 UTC using HRRRE

initial and boundary conditions before beginning frequently

cycled assimilation. The 3-h, 18-member ensemble forecasts

were initialized every 30min during 1900–0300 UTC. In this

study, only hourly forecasts through 2300 UTC are considered.

WoFS initial conditions were created using 1-h, 36-member

HRRRE forecasts initialized at 1700 UTC (valid 1800 UTC).

This is the starting point of 15-min data assimilation cycling

of satellite column liquid or ice water path (Minnis et al.

2011; Jones and Stensrud 2015; Jones et al. 2016), WSR-88D

FIG. 1. Example of (a) raw, (b) 3-km superob, and (c) 5-km

superob radial velocity. The radar location is denoted by the

black dot.

2 The radius of influence for the analysis is 21/2 3 Dx of the

superob grid (7.07 km).
3 The term ‘‘model failure’’ is used here to indicate that the

analysis increments in one or more of the ensemble members are

large enough to generate numerical instabilities and result in the

numerical integration becoming unstable.
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reflectivity andVr, and surface observations using a variant of the

EnKF (EAKF; Anderson 2001) within the Data Assimilation

Research Testbed (Anderson et al. 2009). The boundary con-

ditions originate from a 9-member HRRRE forecast initialized

at 1500 UTC and are repeated four times to create the 36

WoFS members. The microphysical scheme used by all the

WoFS ensemble members is the NSSL two-moment scheme

(Mansell et al. 2010) given the desirable performance of mul-

timoment schemes in supercell simulations (Dawson et al.

2010, 2014). Physics diversity is employed in the planetary

boundary layer, shortwave, and longwave radiation schemes

(Table 2). A Gaspari and Cohn (1999) localization function is

applied to all observations with the horizontal and vertical

cutoffs for radar observations set to 18 and 6 km, respectively.

Additive noise is used to spin up convection where observed

storms are not represented in the ensemble and, along with

adaptive inflation (Anderson and Collins 2007), to maintain

ensemble spread (Dowell and Wicker 2009; Sobash and Wicker

2015). Additional WoFS configuration details are available in

Wheatley et al. (2015) and Jones et al. (2016).

c. Verification method

As WoFS is designed to provide short-term guidance on

hazards associated with convective storms, forecasts of simu-

lated composite reflectivity (hereinafter DZ) and updraft hel-

icity in the 2–5-km layer (hereinafter UH25; Kain et al. 2008)

are used to produce proxies for thunderstorms and mesocy-

clones, respectively. An object-based verification framework

that permits spatial verification of convective-scale features is

chosen (e.g., Davis et al. 2006a,b; Gallus 2010; Johnson et al.

2013; Clark et al. 2014; Skinner et al. 2016, 2018; Jones et al.

2018; Flora et al. 2019).

Forecast objects in simulated DZ and UH25 fields are

identified for each 5-min output time available in WoFS 3-h

forecasts and matched to corresponding objects identified in

gridded Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016)

DZ fields and rotation tracks derived from 2 to 5 km azimuthal

wind shear (Miller et al. 2013; Mahalik et al. 2019). Objects

across the disparate fields are identified using matched per-

centile thresholds (e.g., Mittermaier and Roberts 2010) from a

climatology of 2017 WoFS cases (Skinner et al. 2018). The

resulting WoFS thresholds are 45 dBZ for DZ and 65.7m2 s22

for UH25. The MRMS thresholds are 41.241 dBZ for DZ

and 0.0041 s21 for azimuthal wind shear. UH25 and MRMS

azimuthal wind shear values are aggregated to create 30-min

mesocyclone tracks centered on each output time. Extensive

quality control, particularly for MRMS azimuthal wind shear

observations, is applied to limit the number of spurious me-

socyclone objects. Initial quality control is performed by the

MRMS system, with aliasedVr values corrected and reflectivity

data associated with ground clutter removed by algorithms

developed by Jing and Weiner (1993) and Lakshmanan et al.

(2014), respectively. Additional quality control measures for

MRMS rotation track objects include removing azimuthal

wind shear values that do not occur in proximity to DZ values

greater than 45 dBZ, application of an area threshold of 90 km2

TABLE 1. The eight events presented in this study include various convective modes, locations, and SPC Categorial Outlooks, as

indicated by this table.

Event date Location Primary convective mode SPC Categorial Outlook

1 May 2018 Kansas and Oklahoma Supercell Moderate

2 May 2018 Kansas and Oklahoma Supercell; continuous CI Moderate

12 May 2018 Pennsylvania, New Jersey, and Delaware Linear Enhanced

14 May 2018 Kansas and Oklahoma Mixed; continuous CI Slight

15 May 2018 New York and Connecticut Linear Enhanced

16 May 2018 Texas Supercell Slight

28 May 2018 Colorado and Kansas Mixed; continuous CI Enhanced

29 May 2018 Kansas Mixed; continuous CI Enhanced

TABLE 2. Physics options applied to 36 HRRRE members,

where all members have the same microphysics. The NSSL two-

moment microphysics and RAP land surface parameterization

are applied to all members. PBL schemes include the Yonsei

University (YSU; Hong et al. 2006), Mellor–Yamada–Janjić

(MYJ; Janjić 2002), and Mellor–Yamada–Nakanishi–Niino

(MYNN:Nakanishi andNiino 2009) schemes. Shortwave (SW) and

longwave (LW) radiation schemes include the Dudhia (1989)

shortwave scheme, Rapid Radiative Transfer Model (RRTM;

Mlawer et al. 1997) shortwave scheme, and the Rapid Radiative

Transfer Model–Global (RRTMG; Iacono et al. 2008) shortwave

and longwave schemes (adapted from Wheatley et al. 2015).

Member PBL SW radiation LW radiation

1, 36 YSU Dudhia RRTM

2, 35 YSU RRTMG RRTMG

3, 34 MYJ Dudhia RRTM

4, 33 MYJ RRTMG RRTMG

5, 32 MYNN Dudhia RRTM

6, 31 MYNN RRTMG RRTMG

7, 30 YSU Dudhia RRTM

8, 29 YSU RRTMG RRTMG

9, 28 MYJ Dudhia RRTM

10, 27 MYJ RRTMG RRTMG

11, 26 MYNN Dudhia RRTM

12, 25 MYNN RRTMG RRTMG

13, 24 YSU Dudhia RRTM

14, 23 YSU RRTMG RRTMG

15, 22 MYJ Dudhia RRTM

16, 21 MYJ RRTMG RRTMG

17, 20 MYNN Dudhia RRTM

18, 19 MYNN RRTMG RRTMG
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(this threshold is erroneously listed as 100 km2 in Skinner et al.

2018), and application of a continuity threshold of 10min (i.e., a

rotation track object must contain data from at least 3 different

output times). Resulting objects in all fields with a boundary

displacement ,10 km from an adjacent object are merged.

Forecast objects are matched to verification objects in

space and time using a simple total interest score (Davis

et al. 2006a,b):

TI5
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2 cd)
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max
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where TI is the total interest score, cd is the centroid distance

between an object pair, md is the minimum distance between

an object pair, t is the time difference of an object pair, and the

max subscript designates themaximum allowable threshold for

object matching (40 km for centroid and minimum distances;

25min for time displacement). TI values are calculated for

each potential forecast and verification pair; TI. 0.2 is required

to consider the objects matched. The thresholds chosen for ob-

ject matching were selected to roughly match typical time and

space scales of severe thunderstorm and tornado warnings is-

sued by the U.S. National Weather Service. Object matching

permits matched object pairs to be deemed ‘‘hits,’’ unmatched

forecast objects ‘‘false alarms,’’ and unmatched verification

objects ‘‘misses’’ (Fig. 2). This classification allows the use

of the contingency-table-based metrics probability of de-

tection (POD), false alarm ratio (FAR), frequency bias

(hereinafter ‘‘bias’’), and critical success index (CSI) to as-

sess the quality of reflectivity and mesocyclone forecasts.

Statistical significance of score differences is determined

using a resampling technique described by Hamill (1999).

Hits, misses, and false alarms are randomly sampled between

two forecast sets 1000 times to create a null distribution of score

differences. If the aggregated score difference exceeds the 97.5th

percentile or falls below the 2.5th percentile, the score dif-

ference between two forecast sets is statistically significant

at the 95% confidence level. A complete description of the

object identification and matching method is available in

Skinner et al. (2018).

d. Vr assimilation techniques

Whereas the real-time WoFS in 2018 assimilated 5-km Vr

superobs wherever reflectivity. 20 dBZ, the goal of this study

is to successfully assimilate 3-km Vr observations. First, each

case is run assimilating 3-km Vr observations everywhere the

reflectivity threshold described above is met. However, 3-km

reflectivity superobs are used to thresholdVr, which may retain

FIG. 2. Schematic illustrating the object matching and verification process. Forecast objects

from (a) an ensemblemember and (d) observed objects are quality controlled for (b),(e) object

identification. Forecast and observed objects are then (c) matched, where matched pairs are

hits, unmatched forecast objects are false alarms, and unmatched observed objects are misses.

Using this information, (f) contingency-table metrics POD, FAR, bias, and CSI are calculated.

This figure is adapted from Skinner et al. (2018).
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Vr superobs in areas that are not included in the 5-km superob

analysis. As shown in the next section, using all available 3-km

Vr superobs occasionally produces forecast degradation and

model imbalance. Therefore, adaptive techniques are devel-

oped whereby only those 3-km Vr superobs within the re-

flectivity threshold that may be most impactful on updrafts and

subsequent storm dynamics in the analysis update are assimi-

lated (Chang 2014; Kerr and Wang 2020). This technique is

designed to remove observations that minimally impact ana-

lyses and forecasts except to add noise to the model state.

From the findings by Chang (2014),Vr observations aremost

likely to reduce vertical velocity (w) spread in areas where w

ensemble variance is large. The present study considers en-

semble variance of column-maximum updraft speed. To re-

duce the effects of noise in the variance fields, the average

ensemble column-maximum updraft variance is computed at

each grid point within a 5 3 5 grid point (15-km 3 15-km)

neighborhood. Examples of these averages are displayed in

Figs. 3 and 4 for two cases that demonstrate how column-

maximum updraft variance coverage can differ across cases

FIG. 3. Examples of areas where background column-maximum updraft ensemble variance exceeds 4m2 s22 (orange boxes) with

observed composite reflectivity (.20 dBZ; shaded gray) for 1 May 2018 at (a) 1915, (b) 2115, and (c) 2315 UTC.
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and storm mode. On 1 May (Fig. 3), there is a noticeable

column-maximum updraft variance coverage starting 1900–

2100 UTC coincident with widespread CI before diminishing

by 2300 UTC as storms mature. In other cases, such as an

ongoing MCS on 12 May (Fig. 4), substantial column-

maximum updraft variance is very limited throughout this

timespan even though there is vast storm coverage. Based

on these averaged column-maximum updraft speed vari-

ance fields, Vr observations are only assimilated if they lie

within boxes exceeding a specified variance threshold of

4 m2 s22 (at all vertical levels). This value is based on

preliminary experiments where smaller thresholds dras-

tically increased the number of observations assimilated

without notable forecast skill improvement while thresh-

olds over 5 m2 s22 removed many useful observations and

reduced forecast skill. An innovation-based threshold is also

developed and only retains Vr superobs in boxes where the

maximum 5-km AGL reflectivity innovation exceeds 20 dBZ

(‘‘innovation-mask’’). The innovation threshold magnitude

is based on the prerequisite that all Vr superobs must be

FIG. 4. As in Fig. 3, but for 12 May 2018.
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collocated with reflectivity observations exceeding 20 dBZ.

The neighborhood used to compute the prior reflectivity in-

novations is the same as that for the updraft variances (5 3 5

grid points). The motivation for this additional adaptive fea-

ture is that w-masking alone will not retain Vr superobs at the

onset of CI as several assimilation cycles are required to spin up

model convection after observed CI.

These strategies can reduce computational costs, because

1–2 s are required to assimilate every 1000 observations, as well

as reduce the potential for undesirable noise within the model

state. All other observation types are assimilated as in the real-

time experiments. The impacts on forecasts of adaptively as-

similating observations are quantified using the object-based

verification technique described above. Three experiment sets

are created to assess the impact of this w-mask adaptive as-

similation technique. The initial set assimilates all reflectivity-

thresholded Vr observations available via 3-km superobbing

(hereinafter ALL3KM set). Next, only thew-mask technique is

applied throughout the entire assimilation cycling period for all

TABLE 3. Number of real-time-run 3-h forecast objects aggre-

gated over all cases, lead times, and ensemble members for each

odd forecast initialization time.

1900 UTC 2100 UTC 2300 UTC

Real-time DZ 30 529 48 503 37 287

Real-time UH25 29 865 22 700 13 638

FIG. 5. Time series (3-h forecasts initialized at 1900, 2100, and 2300 UTC) of ensemble mean

(a) POD, (b) FAR, (c) bias, and (d) CSI for real-time DZ (orange) and UH25 (blue). The first

and last 20min of each forecast are removed so that only objects that could be matched in time

and space are considered. The 2100 UTC lines are faded and dashed to improve readability.
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cases (hereinafter MASK set). Last, Vr observations are as-

similated after applying both the w- and innovation-mask

(hereinafter INNOV set).

3. Results

The number of real-time-run forecast objects for each odd

forecast initialization time reveals large sample sizes for veri-

fication statistics (Table 3). Object-based verification statistics

are aggregated across all eight cases for each odd hourly

forecast initialization time (even hourly forecasts are similar

but removed for figure readability), enabling examination of

changes in forecast quality with initialization and lead time.

Real-time experiment verification metrics demonstrates DZ

forecasts are more skillful than UH25 forecasts as in Skinner

et al. (2018; Fig. 5). FAR and bias generally decrease throughout

the assimilation cycling window as spurious convection is sup-

pressed over time as in Skinner et al. (2018).

a. Forecasts of composite reflectivity (DZ)

The initial set of experiments assimilates all available 3-km

Vr observations (ALL3KM) across each case’s domain every

FIG. 6. Time series (3-h forecasts initialized at 1900, 2100, and 2300 UTC) of ensemble

mean difference from real-time (a) POD, (b) FAR, (c) bias distance from 1 (positive and

negative values signify closer to and farther from 1, respectively), and (d) CSI for DZ for

ALL3KM (red), MASK (green), and INNOV (black) with 95% confidence intervals of

difference from real time (shaded). A portion of the shaded area overlapping the zero line

signifies a statistically insignificant difference from real time. The first and last 20 min of

each forecast are removed so that only objects that could be matched in time and space are

considered.
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15min. Improvements in DZ forecast skill (Fig. 6) are notable

for the 1900 UTC initialization time, where POD increases

during the first ;90min. Other improvements are noted at

other forecast initialization times (e.g., decreased FAR and

increased CSI for 2100 UTC forecast). Comparison of the real-

time and MASK DZ forecasts reveals that the w-masking

technique has similar impacts as ALL3KM given the im-

provement in skill during the 1900 UTC forecasts. Unlike

ALL3KM, the improvements in CSI and FAR in the 2100UTC

forecasts are not as large and POD is higher during the early

lead times of the 2300UTC forecasts. As in bothALL3KMand

MASK, the INNOV 1900 UTC reflectivity forecasts have

higher POD early in the forecast period. There is also a

substantial increase in POD during the first half of the 2100

and 2300 UTC forecasts. There is considerable CI from 1900

to 2100 UTC across the eight cases (described below) sug-

gesting INNOV better depicts storm spinup, increasing POD.

The smaller ROI used to create the 3-km superobs is somewhat

a factor in the differences relative to real time; however, the

smaller superob grid spacing dominates since using a 1-km ROI

for 5-km superobs does not substantially alter the forecast skill

(not shown).

b. Forecasts of mesocyclones (UH25)

Mesocyclone forecast skill is positively impacted by 3-km Vr

observations (Fig. 7). The ALL3KM 1900 UTC forecasts are

substantially better, where CSI is nearly 0.1 higher for 30–90-

min lead times. This improvement is due to both an increased

POD and decreased FAR, signaling an improvement in storm

spinup. By 2300 UTC, the prolonged assimilation cycling of

3-km Vr observations has resulted in a large increase in POD

but is not suppressing spurious mesocyclones more effectively

than real-time runs as reflected in comparable bias during the

first 90min of the forecast. This is not the case for reflectivity,

FIG. 7. As in Fig. 6, but for UH25 forecasts.
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likely because the overall object counts are significantly higher

(described in more detail in the next section). However, there

are still positive impacts on ALL3KM CSI during the first

60min of the 2300 UTC forecast.

Forecast skill is improved from real time in MASK, but

improvements are modest compared to ALL3KM. This in-

cludes an increase in POD and CSI and decrease in FAR.

Impacts are subtle when forecasts are initialized at 1900 UTC,

likely due to the lack of storms in this timeframe and reduced

ensemble variance of maximum updraft speed (Figs. 3 and 4).

Ensemble variance is larger in the 2100–2300 UTC window,

thus allowing Vr observations to be assimilated in critical lo-

cations. Beyond 2300 UTC, storms are typically mature in

these cases resulting in reduced ensemble variance (given

several hours of assimilation cycling) and do not differ sub-

stantially from the real-time runs (not shown). Last, INNOV

improves 2100 UTC forecasts as CSI is significantly improved for

the first;75min of the forecasts, given both an increase in POD

and decrease in FAR. Skill in the 2300 UTC forecasts is not as

improved asALL3KMandMASK.When comparing theMASK

and INNOV to the real-time set, there is definite skill-based in-

centive to use the INNOV observation processing method.

c. Model failure in ALL3KM

Many of the ALL3KM experiments develop model failure

from 2300 to 0000 UTC (after .5 h of assimilation cycling)

resulting in model failure, making comparisons beyond 2300

UTC difficult. Model failure in 1–4 ensemble members oc-

curred in three cases (14, 28, 29 May) in this timeframe.

Failures are associated with the vertical Courant–Friedrichs–

Lewy condition (CFL) greatly exceeding O(1) near the top of

storms where the vertical velocity becomes too large for the

given vertical grid spacing and time step.4While the true cause is

unknown, this is potentially a result of an excessive number of

observations perturbing the model state, thus increasing model

imbalances leading to large vertical velocities. Model failure is

harmful for a potential real-time system, so assimilating all 3-km

stormVr observations is suboptimal given this frequent problem.

d. Vr assimilation technique impact on forecast objects

Changing the method ofVr assimilation can alter the forecast

biases, POD, and FAR for both DZ and UH25 objects (Figs. 6

and 7). Since the same verification dataset is used for each ex-

periment, these differences reflect changes in the counts and

areal coverages of forecast objects. Reflectivity object counts

and total areal coverage increase with subsequent forecasts for

all experiment sets (Figs. 8a,b). There are substantially more

FIG. 8. Case-averaged ensemble mean reflectivity (a) object number and (b) object area covered (grid points) with time for the 1900,

2100, and 2300 UTC forecasts. Note that data are missing from 2145 to 2230 UTC 1 May; hence, there is a notable decrease in objects

during this time. Also shown are (c) object number and (d) area covered for each case accumulated over all forecasts.

4 Decreasing the model time step is a solution that can reduce

model failure rates; however, this increases model integration

computational costs in addition to assimilation costs.
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forecast objects than observed objects early in the period, but

comparable numbers of forecast and observed objects beyond

2300 UTC. Objects in 2300 UTC forecasts in all experiments

are generally too small given comparable observed and

forecast object counts but larger observed areal coverage.

ALL3KM has the fewest objects but largest areal coverage

by 2300 UTC, suggesting the individual objects are large

compared to MASK and INNOV, and potentially signaling

more aggressive upscale growth. The four continuous CI

(meaning CI occurring throughout the experiment time

window) cases listed in Table 1 (2, 14, 28, 29 May) have both

underpredicted reflectivity object counts and areal coverage

(Figs. 8c,d). This is because the ensemble lags behind ob-

servations during storm spinup, which is occurring throughout

theDA cycling window. The area–object count ratio is generally

consistent across experiments for each case (i.e., areal coverage

increases with increasing number of objects) suggesting that

individual object sizes are mostly unaffected by adaptive as-

similation. These individual cases all have negative biases and

relatively lowPODs (not shown). The 16May case has lateCI by

comparison resulting in a low object count.

Mesocyclone object counts are overpredicted throughout

the majority of the experiment timeframe (Fig. 9a). The most

significant difference between experiments is the increase

in ALL3KM UH25 object counts and areal coverage during

the first ;90min of the 2300 UTC forecasts (Fig. 9b). This is

consistent with the increased forecast bias present in this ex-

periment set by 2300 UTC (Fig. 8c). As in the reflectivity

verification, this suggests upscale growth in ALL3KM since

MCSs may produce numerous large UH objects. Generally

speaking, INNOV has the least biased object counts and

areal coverage throughout the experiment time window and

across most individual cases (Figs. 9c,d). The consistent

overprediction of mesocyclone object count and coverage

could be attributed to a suboptimal threshold for object

identification. The thresholds in this study were calculated

from a climatology of 2017 cases in Skinner et al. (2018) and

are unbiased for that dataset. However, using a suboptimal

threshold should not substantially impact differences be-

tween experiments, but only verification score magnitudes

(Skinner et al. 2018).

As noted previously, adaptively assimilating 3-km Vr su-

perobs improves storm spinup. An example of this is shown in

Fig. 10, where UH25 probabilities for the southernmost me-

socyclone object on 2 May are enhanced in both MASK and

INNOV. This storm is not well depicted in the real-time or

ALL3KM forecasts. The ensemble does not have adequate

columnmaximum updraft variance or reflectivity innovation in

the vicinity of this storm during spinup (not shown). Therefore,

the inclusion of either 3- or 5-km Vr observations of this

southernmost storm appears to hinder development. The other

convective features in this example are mature at the forecast

FIG. 9. As in Fig. 8, but for mesocyclone objects.
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initialization time, thus, there are only minor differences be-

tween the experiments.

e. Masking impact on number of observations

A second impact of Vr w-masking and innovation-based

thresholding is the change in the number of observations

assimilated compared to the real-time sets. In cases with

particularly widespread regions exceeding the thresholds for

w ensemble variance or reflectivity innovations, there will be sig-

nificantly more observations assimilated. In cases of widespread

threshold-exceeding updraft variance, there are typically more

Vr observations assimilated in MASK than in the real-time

runs; conversely, in cases with relatively few areas of high up-

draft variance, there are fewer Vr observations assimilated in

MASK than in the real-time runs. Assimilating fewer obser-

vations without degrading forecast skill is also an advantage of

adaptive assimilation. The total number of Vr observations

assimilated in real time (5-km superobs) and ALL3KM (3-km

superobs) during 1800–2300 UTC are presented for each case

in Fig. 11a. ALL3KM assimilates an order of magnitude more

FIG. 10. The 90-min forecast (initialized 2100 UTC 2 May) probability swathes of UH25 exceeding 60m2 s22 in (a) real time,

(b) ALL3KM, (c) MASK, and (d) INNOV with observed mesocyclone objects (shaded gray). Local storm reports are tornadoes (red

triangle), damaging winds (blue square), and hail (green circle).
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Vr observations than the real-time experiments. The MCS and

mixed-mode convection cases have the most Vr observations,

as expected. The average change inVr observation assimilation

from real-time cases for MASK and INNOV shows when the

w-masking and innovation techniques are most utilized (Fig. 11b).

There is an average increase in assimilated Vr counts during

1900–2100 UTC in both experiment sets since large updraft

ensemble variance (and/or CI in the case of INNOV resulting in

more observations) are more widespread in this timeframe. For

example, at the maximum just before 2000 UTC, INNOV as-

similates over 4.53 103Vr observations on 1May while only 200

were assimilated in real time. However, 12 May does not have

widespread updraft variance andCI, so INNOVonly assimilates

2 3 103 Vr observations at this time compared to the 1.7 3 104

assimilated in real time (not shown). Beyond 2100 UTC, updraft

variance and CI diminishes, causing fewerVr observations to be

assimilated.

The percentage change in observations throughout all cycles

between the MASK/INNOV and real-time experiments are

designated in Fig. 12 along with overall (all forecast times)

change in reflectivity POD and success ratio (SR; 1 2 FAR).

Some cases have a reduction in Vr observations assimilated

versus the real-time experiments despite the higher-resolution

observational analyses (12, 14, 15, 16, and 29 May). The 12, 15,

and 16 May cases have fewer observations assimilated in both

MASK and INNOVwith increases in forecast skill overall. The

reduction in assimilated observations is particularly important

for 12 and 15 May since these two cases feature MCSs with the

two highest observation counts (Fig. 12a). The cases where

the assimilated observation counts in MASK and INNOV are

similar to the real-time experiments have less change in fore-

cast skill. Mesocyclone forecast skill is impacted more from

case to case than reflectivity forecast skill (Fig. 13). Two su-

percell cases, 1 and 2 May, have increased POD and SR in 30-

min forecasts (Figs. 13a,b). There is a mixture of positive and

negative impacts on forecast skill across cases similar to

changes in individual ALL3KM cases, but as previously noted,

these statistics are valid for all forecast initialization times, and

so the improved forecast skill shortly after CI (Figs. 6 and 7) is

dampened in these results.

4. Conclusions and summary

Three sensitivity experiments are performed for eight case

studies during the spring of 2018 to assess the impact of altering

Vr superobs assimilated by WoFS. In the first set of experi-

ments, 3-km Vr superob analyses are assimilated instead of

5-km analyses, which improves reflectivity and UH25 forecasts

over the real-time experiments, particularly for early initiation

times. However, assimilating entire 3-km Vr superob analyses

are computationally expensive, especially in cases of substan-

tial storm areal coverage, and introduces noise that may reduce

forecast skill owing to increased spurious convection generated

by large imbalances in the ensemble states. Important for real-

time considerations, model failure occurred in three of eight

cases when 3-km Vr superobs are assimilated.

In the second set of experiments, Vr observations are not

assimilated where the ensemble variance in vertical velocity is

below 4m2 s22. The impacts of thisw-masking on DZ forecasts

are small, but generally positive, with an increase in POD and

FIG. 11. (a) Accumulated Vr observations assimilated from 1800 to 2300 UTC in real time

and ALL3KM for each case. (b) Average percentage change among cases in number of Vr

observations assimilated in MASK experiments and INNOV relative to real time.
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associated positive bias in forecasts at various lead times

(Fig. 8). However, UH25 forecasts are notably improved over

real-time runs. While not every case presented has sub-

stantially improved forecast skill, many of them see im-

provements over the real-time experiments at various

forecast lead times with only a few instances of forecast

degradation (Figs. 12 and 13).

One limitation of the w-masking method alone is that it

discards potentially beneficial observations during CI since

the ensemble’s updraft variance is typically small while the

members spin up newly observed convection. This motivated a

third set of experiments in which the denser Vr observations

are assimilated wherever the updraft variance is large or the

reflectivity innovation is large. This method improves both

reflectivity and mesocyclone forecasts as in ALL3KM while

also discarding many observations. The greatest benefits from

this approach occur in forecasts initialized shortly after wide-

spread CI. In cases where new storms are continually initiating,

this technique produces improvements throughout the assim-

ilation cycling. Given the forecast skill increases via 3-km

FIG. 12. Individual case percentage change in number of Vr observations assimilated (relative to real-time ex-

periments) vs reflectivity object (a) POD change and (b) SR change multiplied by 100 for 30-min forecasts for

MASK (green markers) and INNOV (gray markers). A marker in the top-left quadrant represents an increase in

skill with decrease in observations, which is most optimal. Conversely, a marker in the bottom-right quadrant

represents a decrease in skill with increase in observations, which is least optimal. A marker in the top-right

quadrant also represents an increase in skill. The corresponding ALL3KM skill changes (red markers) from real

time are displayed on the axes to the right.

34 WEATHER AND FORECAST ING VOLUME 36

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/02/21 01:49 PM UTC



superobs and the reduction in computation from the adaptive

process, it is the most optimal of the three techniques tested

with WoFS.

In addition to the potential forecast skill increases provided

by adaptive assimilation, the number of observations assimi-

lated afterw-masking is reduced in some cases even though the

superobbed grid spacing is 3 km instead of 5 km. This is true

predominantly for theMCS andmixed mode cases that usually

have more Vr observations compared to discrete supercell ca-

ses. The reduction in assimilated observations decreases the

computational expense, an important consideration given the

rapid assimilation cycling in WoFS. A reduction in the number

of assimilated observations can also result in improved fore-

casts by eliminating many observations that may have spurious

or low correlations with the model state fields. Two cases have

low environmental CAPE (12 and 16May) thus having weaker

updrafts leading to few areas where the specified w variance

threshold is met. However, the ALL3KM counterpart experi-

ments have very similar forecast skill, so lowering the w vari-

ance threshold would only increase the computational expense

via assimilation and not improve forecast skill in these in-

stances. Future variance-based observation masking studies

for other observation types may be useful, especially for data

assimilation systems analyzing intermittent phenomena (e.g.,

convection) when radar and satellite observations are used.
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